How to Enhance Zoonotic Disease Management by Addressing Knowledge Gaps and Implementation Barriers

Co-Authors
Yin Myo Aye, Wondwossen Gebreyes
& Latiffah Hassan
GUIDELINES FOR COUNTERING ZOONOTIC SPILLOVER

HOW TO ENHANCE ZOONOTIC DISEASE MANAGEMENT BY ADDRESSING KNOWLEDGE GAPS AND IMPLEMENTATION BARRIERS

Introduction

In the face of evolving disease threats, the need for adaptable and integrated public health measures cannot be overstated. This module examines barriers to implementing public health strategies to prevent and mitigate zoonotic spillover and the critical knowledge gaps (areas where we need more information to act) preventing implementation to give the reader tools for improvement in their local, regional, and national environment. Key areas where knowledge is lacking include information to inform health security plans at every level, supply chain infrastructure, determining the most effective education and training methods, tools to assess the spillover problem throughout the chain, and ways to evaluate the best policies to effect change in the human–animal–environment interface.

The module details practical actions to address technical, coordination, collaboration, communication, and institutional challenges that hinder the effective implementation of integrative public health strategies. It features several case examples from Southeast Asia and other regions to illustrate how individuals and organizations overcame barriers to enhance outcomes. The focus spans local, national, and regional supply chain interactions, emphasizing an integrated approach to One Health implementation for preventing and mitigating zoonotic spillover. Integration is particularly crucial in the context of low- and middle-income countries and areas in Southeast Asia known to have an intricate and dynamic interface between humans, animals, and the environment (see ‘Module 6: Strategies to Engage Diverse Stakeholders Across the Live Animal Value Chain to Address Risk’).

The module is structured around nine key barriers or gaps (Figure 7-1), and actionable plans addressing these challenges within the summarized framework for enhancing resilience against zoonotic disease threats in Southeast Asia (Box 7-1):

1. Resource constraints
2. Operationalizing One Health
3. Communication, collaboration, and coordination
4. Data management, sharing and security
5. Transboundary disease surveillance
6. Human behaviour and consumption
7. Workforce and human capacity development
8. Laboratory capacity and biosafety
9. Engagement of commercial entities
FIGURE 7-1 Overview of the nine key areas of barriers and gaps for implementation of policies related to zoonotic spillover. These interconnected barriers necessitate a collective approach to lay the foundation for a robust strategy aimed at enhancing Southeast Asia’s resilience against zoonotic disease threats.
BOX 7-1
Framework for enhancing resilience against zoonotic disease threats in Southeast Asia

The following framework proposes three cross-cutting strategies to enhance Southeast Asia’s resilience against zoonotic disease threats, emphasizing the importance of collaboration, resource optimization and coordinated action to safeguard public health and ecosystem in the region:

Coordinated and collaborative action: Harmonize efforts through collaboration and coordination of activities among diverse sectors and agencies responsible for human health, animal health (domestic and wildlife), and environmental health. These efforts should include cross-border cohesion and regional strategies that integrate various sectors across borders through joint efforts in surveillance, research, and response initiatives.

Efficient resource allocation: Address existing disparities, inadequacies, and variation (Coker et al, 2011a) (in resources such as weak and varied surveillance systems, services, research, etc.). Variation leads to challenges in estimating disease burden and difficulty in conducting transboundary, cross-country comparisons, as well as substantial underreporting of diseases. To overcome this, strategies such as increasing public awareness and education about disease reporting and improving capacity that enhances healthcare workers’ ability to detect, diagnose, and report zoonotic diseases.

Expertise pooling: Sustain a reservoir of skilled professionals adept at addressing the interface of human, animal, and environmental health in the region. Encourage collaboration and knowledge exchange among experts in various fields extending beyond national borders enables Southeast Asia to tap into a wealth of collective intelligence. Cross-border collaboration enable experts from different countries to perform joint research projects, collaborative data analysis, and policy development.

BARRIER 1: RESOURCE CONSTRAINTS

Unequal allocation: Limited resources pose a significant barrier to effectively prevent and mitigate spillover from zoonotic diseases in Southeast Asia. Although adequate financial, human capacity, and infrastructure resources are essential for effective control strategies, the region faces challenges in both the availability and equitable allocations of these resources. In Southeast Asia, unequal distribution is a major obstacle where more funding is usually directed to the human health sector, leaving agriculture, veterinary establishments, and animal surveillance under-resourced (Coker et al., 2011a). This imbalance hinders comprehensive disease prevention efforts, as all sectors are crucial in mitigating spillover risk. This challenge is highlighted in ‘Module 3: Efforts to Prevent Transboundary Disease Outbreaks in the Southeast Asia Region’.

Neglected issues and misaligned priorities: Zoonotic diseases of wildlife origin are also often neglected globally, partly due to the challenge of integrating across sectors, as well as limited funding and lack of awareness. Promoting transdisciplinary systems approaches such as One Health or EcoHealth underscoring the interconnectedness of humans and wild animals within ecosystems, and considering environmental and ecological changes is crucial. Unfortunately, while collaborative effort offers opportunities for strategic investment, securing financial resources remains challenging. Donor priorities further complicate the issue, as programs funded
by donor, which are commonly external to Southeast Asia, may not align with the specific needs of individual countries or the region (Coker et al., 2011a).

Inadequate funding: Historically, health policies and programs, such as the International Health Regulations (WHO IHR, 2005) have primarily emphasized disease prevention, preparedness, and response (PPR), often neglecting the upstream drivers of disease emergence. Emerging evidence highlights the pivotal role of these drivers in disease outbreaks, necessitating a re-evaluation of primary prevention measures upstream at the driver interface. However, securing financial resources for effective PPR remains a limitation that requires attention from policymakers at the country level.

Siloed government funding: Traditionally, government funding often is channelled through a siloed sector-specific system, hindering cross-sectoral fund and resource sharing. Fortunately, a shift towards collaborative effort is occurring where governments, global funders, and partners are now recognizing the importance of collaborative efforts to combat zoonotic diseases, embracing the One Health approach. This collaborative effort between donors and local authorities offers opportunities to determine strategic investment priorities across relevant sectors. The need for such collaboration becomes more pronounced during epidemics and pandemics, particularly in low-resource developing regions, as it allows for efficient use of all available funding and financing mechanisms.

Case Example 7-1
Lessons from SARS in Singapore

A recent study examined how the Singapore government’s effort to combat the SARS outbreak informed its effort to control both the country and cross-border spread of SARS-CoV-2 (Kim et al., 2022). The study indicates that Singapore successfully used lessons learned during SARS to implement a ‘whole-of-government’ response to combat COVID-19. Here are four key approaches that Singapore adopted:

1. Ensuring vital healthcare resources and developing contingency plans. Singapore’s experience with SARS underscored the importance of maintaining access to essential healthcare infrastructure. This led to the establishment of ample essential healthcare resources with contingency plans, including resource stockpiling and distribution, the creation of temporary medical facilities, and the government’s swift designation of the National Centre for Infectious Diseases as the main hospital for critically ill COVID-19 patients—showcasing their proactive crisis preparedness and prevention strategies (Kim et al., 2022).

2. Mobilizing the private sector and collaborations for whole-of-society response. Recognizing the limitations of relying solely on public health institutions, the Singapore government-initiated collaborations with private hospitals through initiatives such as the Public Health Preparedness Clinic (PHPC) scheme. This program harnessed the capacity of private entities such as clinics and hospitals to partner with the government, providing essential healthcare services, medications, tests, and vaccines (Kim et al., 2022; Lum et al., 2021). Additionally, private entities such as Grab, a Singapore-based app that provides ride-sharing and food delivery services, played a pivotal role, offering rides for healthcare professionals (Baharudin, 2020; Kim et al., 2022).
3. **Combine bottom-up with top-down approaches.** Singapore’s management policies utilized both top-down, centralized styles and bottom-up approaches during the COVID-19 pandemic (Kim et al., 2022). The government partnered with non-governmental organizations (NGOs) to support vulnerable populations, ensuring equal access to essential services. Collaborations such as the VIsualAId project highlighted the importance of involving private actors and volunteers beyond the healthcare sector, including local and international business entities, non-profit organizations, academic institutions, and other countries, ensuring a holistic and inclusive response (Kim et al., 2022; Lee, 2020).

4. **Leveraging scientific research and digital technology.** As the pandemic persisted, the Singapore government tapped into the expertise and knowledge of the private sector, including private telemedicine providers. These partnerships enabled virtual consultations and supervised self-swab tests, easing the burden on hospitals. Additionally, the collaborations between academia, tech industries, and the government led to innovative solutions, including diagnostic tools, contact-tracing apps such as TraceTogether, and health passports for safe border reopening (Chow et al., 2023; Kim et al., 2022).

Actionable guidelines to address resource constraints for zoonotic disease prevention

1. **Strengthen local and regional collaboration:** Encourage collaboration among governments, NGOs, communities, and other relevant stakeholders to develop a comprehensive approach to address high-risk health behaviours associated with zoonotic disease spillover. Engage local communities, civil society groups that are already active in the target area, traditional leaders, religious organizations, and indigenous groups to ensure the development of culturally sensitive strategies.

2. **Develop targeted resource mobilization:** Focus on allocating resources strategically to enhance preparedness and response capabilities in regions identified as disease 'hotspots'. This approach should span local, transboundary, and international levels to ensure a coordinated response to potential outbreaks.

3. **Sustain funding for One Health:** Establish funding mechanisms for applied research that operates within the One Health framework, through collaboration with the Quadrilateral UN agencies. Reallocate funds strategically to address Sustainable Development Goals (SDGs), including funding for transboundary disease surveillance as outlined in the International Health Regulations (IHR).
GUIDELINES FOR COUNTERING ZOONOTIC SPILLOVER

BARRIER 2: OPERATIONALIZING ONE HEALTH

FIGURE 7-2 One Health is the interconnected idea linking human, animal, environmental, and plant health. See also Figure 1-1, Module 1.

While the concept of linking human, animal, environment, and plant health under the One Health framework is now widely accepted (Figures 7-2, 7-3), practical implementation of its integrated approach remains challenging. In the Asian Pacific, region-specific core competencies for preventing, controlling, detecting, and responding to zoonotic disease capacities have been defined as: (1) Management, (2) Culture and Beliefs, (3) Leadership, (4) Values and Ethics, (5) Collaboration and Partnership, (6) Communication and Informatics, and (7) Systems Thinking. Achieving these core competencies is crucial for effective implementation of the One Health approach and aligns with several international strategic and action-oriented programs and initiatives such as the International Health Regulations (IHR). In 2005, the World Health Organization (WHO) Regional Offices for South-East Asia and the Western Pacific formulated the Asia Pacific strategy for Emerging Diseases (APSED), aimed to create a common framework for countries in both regions, enhancing their abilities to manage and respond to emerging infectious diseases (EIDs), in alignment with the core capacity criteria outlined by the IHR.1

1 In the decade since, the remit of APSED has broadened to an all-hazards approach to include non-infectious hazards (APSED III).
The avian influenza A (H5N1) crisis in 1997 in Hong Kong, China highlighted the need for functional, multisectoral coordination between human and animal health domains (Chan, 2002; Ching, 2018). It was a turning point for adoption of the One Health concept in the region. In response, guidance was jointly developed in 2009 by WHO, the Food and Agriculture Organization (FAO), and the World Organisation for Animal Health (WOAH) called *Zoonotic Diseases: A Guide to Establishing Collaboration Between Animal and Human Health Sectors at the Country Level* (WHO et al., 2009). In 2019, given the growing need for global standardized guidance on the One Health approach, FAO, WHO, and WOAH, published *Taking A Multisectoral One Health Approach: A Tripartite Guide to Addressing Zoonotic Diseases in Countries* (FAO et al., 2019). In 2021, the previously tripartite organizations later expanded to include the United Nations Environment Programme (UNEP) to form the Quadripartite. A year later, in 2022, the Quadripartite launched the *One Health Joint Plan of Action, 2022-2026*, the first joint One Health plan aimed at creating an integrated systems framework to better prevent, detect, and respond to health threats (FAO et al., 2022). Examples of One Health standing coordinating bodies in the Southeast Asia region that support this framework can be found in Box 7-2.

Operationalizing One Health requires undertaking specific collaborative efforts across sectors at the human–animal–environmental interface, involving actors in sustainable agriculture, animal health, plant health, forest health, aquaculture, food safety, antimicrobial resistance (AMR), food security, nutrition, and livelihoods (FAO et al., 2022; FAO, n.d.-b.; Velazquez-Meza et al., 2022). Political will, adequate financing, collegiality, trust-building, and reducing territorialism among sectors are also essential for successful implementation (EMPHNET, 2023; Nzietchueng et al., 2023).

Local engagement and partnership building with key players such as industries, conglomerates, food-animal producers, consumers, government regulators, academia, NGOs and civil society organizations (CSOs) are essential (FAO, n.d.-a.). In addition, integrating environmental and socioeconomic factors related to disease emergence and spread into the development and implementation of One Health interventions is essential (Degeling et al., 2015; FAO et al., 2022). Currently, collaboration primarily focuses on domestic animal and human health sectors, with passive involvement of wildlife, ecosystems, and environmental health sectors. Many...
activities remain to be sector-specific, lacking multisectoral integration and transdisciplinary approaches therefore hindering the effectiveness of a holistic one health systems-based approach.

When operationalizing the One Health approach, it’s crucial to recognize that monitoring and evaluation (M&E) are integral parts of the successful implementation of the programs that integrate human–animal–environmental–plant health (Hall and Le, 2015). While current M&E efforts in Southeast Asia often rely on qualitative insights such as case examples and success stories, and supplemented by descriptive statistics, there is a need to aim for longer-term evaluations and broaden evaluation frameworks that involve incorporating measurable key performance indicators that mirror the region's defined core competencies.

Case Example 7-2
The Lawa model in Khon Kaen Province, Thailand

The following example to eradicate a foodborne trematode (fluke) in Thailand illustrates the importance of an innovative approach that integrates the One Health and EcoHealth concepts, emphasizing biodiversity as part of the main strategy (Lerner and Berg, 2017). The *Opisthorchis viverrini* is primarily transmitted to humans through the consumption of traditional freshwater fish dishes and results in liver fluke infection.

Endemic to Southeast Asia, particularly Thailand, Laos, Cambodia, and Vietnam (Sithithaworn et al., 2012; Sripa et al., 2010), human cases of Southeast Asian liver fluke *O. viverrini*, persist in certain Thai regions and beyond (Crelle et al., 2021). Despite prior and long-standing control efforts in Thailand, *O. viverrini* infection rates remained high in northeastern provinces. In response, a joint One Health/EcoHealth strategy, known as the Lawa model, was implemented in the Lawa Lake region of Khon Kaen province, an area endemic for liver fluke infections. The Lawa model, developed by the Tropical Diseases Research Center (TDRC) at Khon Kaen University, incorporates anthelminthic treatment, intensive health education initiatives in communities and schools, ecosystem monitoring, and active community participation (Figure 7-4) (Sripa et al., 2015).

Thanks to the integrated nature of the strategy, the Lawa model has achieved remarkable success in reducing *O. viverrini* infection rates from 50% to approximately one-third and has reduced bile duct cancer occurrences across 10 villages surrounding the Lawa Lake community (Sripa et al., 2015). Additionally, prevalence of intermediate host fish species (Figure 7-5) dropped to less than 1% from a baseline of 70%. Due to the success of this initiative, it is being expanded to other parts of Thailand and neighbouring Mekong countries (Sripa et al., 2011). This exemplifies a transdisciplinary strategy fostering collaboration among various stakeholders, including government agencies, academia, and local communities, while enhancing disease surveillance and control at the intersection of human, animal, and environmental health.
GUIDELINES FOR COUNTERING ZOONOTIC SPILOVER

FIGURE 7-4 Community-based health programs run by village health volunteer workers in Khon Kaen province, Thailand. Source: Sithithaworn et al., 2012.

FIGURE 7-5 (Panel A) *Bithynia* species snails, which serve as the intermediate hosts for *Opisthorchis viverrini*. (Panel B) Fishing activity in Chonnabot District, Khon Kaen Province, Thailand. (Panel C) Cyprinoid fish caught from natural water courses in the district. (Panel D) *Koi-pla*, a traditional dish made from uncooked cyprinoid fish. *Koi-pla* is often contaminated with viable, infectious metacercariae of *O. viverrini*. Source: Sripa et al., 2011.
Case Example 7-3

Interagency task force response to Reston ebola outbreak in the Philippines

FIGURE 7-6 The Reston ebolavirus has been implicated in cross-species transmission among pigs, macaques, and humans, which prompted extensive epidemiological inquiries involving Philippine health and veterinary authorities, alongside experts in filoviruses. Photo credit: Pixabay and Flickr.

This case outlines the response efforts in the Philippines following a Reston ebola outbreak among monkeys and pig farms in the 1990s and 2000s, which subsequently led to infection among farm workers who had close contact with sick pigs in 2009 (Miranda and Miranda, 2011; WHO, 2009). The Philippines has faced challenges in managing infectious disease outbreaks such as Henipavirus sourced from bats and transmitted through infected horses in Mindanao in 2014 (Ching et al., 2015). Response teams, formed in reaction to such outbreaks, usually disband after the crisis subsides, but the agility and flexibility of outbreak management is dependent on the continuity and maintenance of operational groups. To reverse this trend, experts recommended establishing a task force with consistent and frequent meetings of operational groups to maintain awareness and preparedness for infectious diseases’ potential risks over time.

A task force was established with external funding and support and composed of individuals from organizations such as the Department of Health (DOH), Department of Agriculture (DA), and the Department of Environment and Natural Resources (DENR).

The Philippines also grapples with the autonomy of local governments, leading to diverse and sometimes conflicting policies at the local level, further complicating national coordinated efforts. To help integrate more collaboration across levels, the College of Public Health at the University of the Philippines with support from USAID and Chevron, established a master’s program on One Health, through the Southeast Asia One Health University Network (SEAOHUN). The Graduate school curriculum includes ‘Fundamentals of One Health’ and related modules. The Philippine One Health University Network collaborates with the Bureau of Animal Industry to investigate leptospirosis in swine, specifically in food production farms in Los Banos. Furthermore, the IHR PVS (Performance of Veterinary Services) National Bridging Workshop, organized by the Tripartite (WHO, FAO, WOAH) and hosted in the Philippines, exemplifies the nation’s commitment to strengthening its preparedness and response mechanisms despite the challenges faced.
GUIDELINES FOR COUNTERING ZOONOTIC SPILLOVER

Actionable guidelines for operationalizing One Health

1. **Institutionalize collaboration:** Establish permanent interministerial bodies for sustained collaborations across ministries and institutions, moving beyond transient interministerial committees.

2. **Develop a national One Health joint action plan:** Develop a comprehensive national plan involving all relevant sectors, leveraging global guidance, such as the Quadripartite One Health Joint Plan of Action (FAO et al., 2022), while customizing it to the specific, local context.

3. **Promote active coordination and information sharing:** Facilitate collaboration and the exchange of information among a broad spectrum of stakeholders.

4. **Implement a country-specific coordination framework:** Institute a country-level coordination framework within an agreed-upon structure, e.g., Thailand’s One Health Steering Committee rooted in the Ministry of Public Health (Čoker et al., 2011b; Rüegg et al., 2018; Tangwangvivat et al., 2019).

5. **Strengthen and expand national capacities:** Utilize existing resources such as the Tripartite Zoonoses Guide and operational tools to augment existing national capabilities (FAO, 2019) in one health implementation.

6. **Invest in workforce development:** Equip professionals from various sectors with the skills and knowledge necessary for effective collaboration and coordinated action on zoonotic disease threats.

BARRIER 3: COMMUNICATION, COLLABORATION, AND COORDINATION

The integration of sectors along the human–animal interface that spans local, national, and regional domains hinges on effective and efficient communication, collaboration, and coordination. However, limited capacity and siloed organizational systems can hamper these activities, leading to a loss of trust, and prevent sustainable collaboration across ministries, disciplines, and sectors (Delesalle et al., 2022; dos S. Ribeiro et al., 2019). Fostering a culture of cooperation and information sharing among partner organizations is critical to address the spread of infectious diseases (Liverani et al., 2018). Providing knowledge integration for stakeholders and leaders across various disciplines is fundamental to operationalizing the One Health approach. Introducing One Health concepts into educational curricula, from medical schools to social sciences and relevant business and engineering units, facilitates a deeper understanding of the concept and its practical applications (Docherty and Foley, 2021; Haxton et al., 2015; Rabinowitz et al., 2017).

For outreach and communication with community partners, fostering engagement in a multicultural and multidisciplinary manner is critical, given that policies and practices are better received if they are simple and easy to understand, compatible with pre-existing community behaviours, have observable benefits, and offer relative advantages to the implementing community (See ‘Module 8: How to Use This Guidance: Applying Participatory Methodologies to Countering Zoonotic Spillover’). In this, management of bidirectional information flow (between government entities and communities) is essential and includes attention to misinformation and disinformation. Strategies for risk management need to be built within
narratives that empower behaviours to reduce risk without creating or promoting unintended consequences such as stigmatization of groups of people or animals, e.g., global media attention on bats associated with the COVID-19 pandemic (Nanni et al., 2022). Accurate and appropriately timed information sharing is critical to address preventive, control, and mitigation efforts when epidemics of zoonotic spillover origin happen. Efforts for accurate communication must be based on reliable data evidence. Communication based on unreliable data could lead to confusion, costly product rejection, as well as lack of trust of the public health (including veterinary) system (HHS, 2021).

In addition to these approaches, the successful adoption of the One Health concept often requires a top-down initiative. International agreements such as the IHR, the Cartagena Protocol on Biosafety, and the Biological Weapons Convention serve as international models, catalysing top-down changes within member countries (Eggers and Mackenzie, 2000; Millett 2010). These agreements have spurred local efforts such as the APSED III, demonstrating the potential for regional collaboration. Compliance with these agreements is evaluated through mechanisms such as the Joint External Evaluation (JEE), highlighting progress and areas needing improvement (Razavi et al., 2021).

BOX 7-2

Southeast Asian countries with a standing One Health coordinating body

Thailand: The Coordinating Unit for One Health (CUOH) in Thailand is designed to expedite One Health implementation in the country (Tangwangvivat et al., 2019).

Vietnam: The One Health Partnership for Zoonoses (OHP) unites One Health stakeholders from both national and international governmental and non-governmental sectors, all operating under the leadership of the Government of Vietnam (Nguyen-Viet et al., 2022).

Indonesia: Legislation of One Health in Indonesia, Presidential Instruction number 4 of 2019, strengthened coordination and implementation of One Health in Indonesia under the leadership of the Coordinating Ministry for Human Development and Cultural Affairs (Cabinet Secretariat of the Republic of Indonesia, 2019).

Singapore: The One Health Framework in Singapore highlights involvement of a transdisciplinary approach and multiple agencies to understand, prevent, prepare for, and address cross-sectoral public health threats spanning human, animal, water and environment health domains (Lian et al., 2019).

Malaysia: The Emergency Ordinance of 1979 can activate the National Security Council to create an authoritative platform for multisectoral collaboration and resource sharing during the period of impending need (Common LII, n.d.). The interagency One Health activities for zoonoses and other One Health-relevant issues are based on rotational chairmanship among ministries, with close intersectoral coordination for zoonoses between human, animal, and environmental health ministries. The One Health concept and training are championed by the Malaysian One Health University Network (MyOHUN).
Case Example 7-4
Regional initiatives in fostering communication and collaboration in One Health

Strengthening One Health communication: INGSA and NASEM’s exchange with Thai NIH

In 2022, as part of the data gathering process to create this guidebook, INGSA and NASEM undertook a collaborative visit to Thailand’s Ministry of Public Health and the National Institute of Health (NIH). Thailand’s Department of Disease Control (DDC) shared information about the resources employed in Thailand to address public health challenges and delved into the intergovernmental networks established by Thai officials to effectively tackle the complexities of zoonotic spillover. Furthermore, the delegation shared comprehensive details on Thailand’s One Health operating procedures specifically tailored for disease outbreak control, offering a glimpse into the nation’s strategies for promoting integrated and collaborative approaches to safeguard public health. The information presented was used to inform the creation of this guidebook.

FIGURE 7-7 Building bridges for One Health. INGSA and NASEM workshop participants visit the Thailand Ministry of Health. Photo credit: Meghan Davis.

Southeast Asia One Health University (SEAOHUN)

FIGURE 7-8 Some of the more than 300 health practitioners, educators, and researchers from 30 countries who gathered at the 2022 SEAOHUN International Conference. Photo credit: Nation Thailand, 2022.
The Southeast Asia One Health University Network (SEAOHUN) was formed to be a catalyst for fostering effective communication and collaboration among diverse stakeholders committed to the intersection of human, animal, and environmental health and to strengthen the ability of countries within the region to prepare for, detect, and respond to infectious disease outbreaks (SEAOHUN, n.d.; USAID and SEAOHUN, 2021). SEAOHUN’s collaborative efforts extend beyond academic realms, involving partnerships with other public agencies. Through these collaborations, SEAOHUN actively contributes to strengthening One Health education across Southeast Asia, creating a robust foundation for addressing complex health challenges (USAID and SEAOHUN, 2021). A noteworthy initiative undertaken by SEAOHUN is the organization of student summits, aimed at developing the next generation of One Health leaders. This approach is designed to ensure that a cohort of young professionals are well-equipped to navigate the intricacies of interconnected health domains (SEAOHUN, 2021).

Field simulation exercises between Malaysia and Thailand

Malaysia-Thailand exemplify multinational and multi-sectoral efforts to combat rabies through field simulation exercises focused on zoonotic diseases, including avian influenza and rabies. These exercises play a crucial role in strengthening the ‘3Cs’—communication, collaboration, and coordination—within and between the two countries. Practicing against realistic zoonotic disease outbreak scenarios allows participants to test the readiness and effectiveness of outbreak response mechanisms by simulating realistic scenarios (Jahis et al., 2021). Additionally, Malaysia conducts similar multisectoral exercises at state and national levels, involving various stakeholders from government, academia, and local authorities, to enhance coordinated efforts in disease detection, response, and control.

Actionable guidelines for improving communication, collaboration, and coordination

1. **Empower local communities:** Empower local leaders through targeted training programs to enhance early warning, detection, and outbreak response skills. Foster local leadership in public health initiatives.

2. **Engage diverse public service expertise:** Redesign public service hiring and employment to include diverse expertise from various sectors, e.g., Thailand’s One Health Steering Unit employs veterinarians and environmental health experts.

3. **Share staff among ministries:** Facilitate staff exchanges among ministries to foster cross-agency familiarity that will enhance coordination in the event of an outbreak. Recognize that this is a short-term solution while workforce systems adapt to changing needs.

4. **Integrate manuals and coordination methods:** Develop and implement integrated manuals and coordinated methods for harmonized surveillance efforts.

5. **Share leadership and cross-sectoral engagement:** Promote shared leadership, conduct high-level cross-sectoral field engagements. Leaders incentivize cross-sectoral communication, collaboration, and coordination in organizations.

6. **Use team-based and participatory approaches:** Utilize team-based and participatory approaches in outbreak/pandemic response (Module 8): For planning and implementation:
GUIDELINES FOR COUNTERING ZOONOTIC SPILLOVER

- engage agribusinesses when implementing safety and agricultural practices (HSSCP) (see Barrier 9, below) to create long-term relationships, reciprocal policies, and fewer foodborne illnesses. Although increased costs can be associated with implementing safety measures, discussions with agribusiness and locals might identify ways to reconcile differing viewpoints.

- pursue government-led incentives—possibly including legislative requirements—to encourage prompt reporting of outbreaks by farmers and locals (e.g., from WOAH). Destigmatize outbreak and disease identification and reporting amongst local stakeholders, including smallholder animal keepers.

- develop regional biosecurity policies engaging governmental agencies and other partners in farming, wildlife, and conservation communities. Experts can facilitate communication of long-term benefits of conservation beyond costs (i.e., disease prevention, health security, natural capital accounting) to government officials.

BARRIER 4: DATA MANAGEMENT, SHARING, AND SECURITY

Integrating One Health to stop zoonotic spillover and to better respond to disease outbreaks requires overcoming data-related challenges and better ways to track, store and share information between organizations and across initiatives (Module 5). The challenges lie in collecting and integrating data from diverse sectors\(^2\); establishing compatible robust data management systems; and ensuring smooth data integration and analysis of diverse data types such as pathogen information, human and animal case data, and relevant metadata. The latter has the added challenges of dismantling silo-minded and credit-seeking behaviour among stakeholders.

Case Example 7-5

Examples of data sharing that strengthened surveillance and response efforts

Thailand: Participatory One Health Digital Disease Detection (PODD)

In Chiang Mai, Thailand, the **PANORAMA** project introduced the **PODD platform** to combat zoonotic spillovers and monitor emerging animal and environmental health threats (Yano et al., 2018). A diverse team, including veterinarians, public health and livestock officers, community volunteers, technologists, economists, social scientists, and critically, geographic information system (GIS) experts, collaborated on this initiative. Community volunteers using the PODD mobile app play a crucial role in reporting potential disease outbreaks and environmental hazards. The PODD platform uses a smartphone and web application to make the information as accessible as possible to the community, empowering individuals to report unusual disease events involving domestic pet and wild animals, as well as humans. These reports inform local health officials who then investigate and may have a better idea of the diseases within the community and can more efficiently take action as needed.

\(^2\) Common gaps often include environmental sector data on funding sustainable land-use planning as a preventive measure against disease emergence as well as commercial data, particularly from livestock surveillance.
Kenya: Mobile-Based Surveillance for Rift Valley Fever

Kenya’s Ministry of Agriculture, Livestock, and Fisheries’ initiative (MALF), funded by the Global Health Security Agenda (GHSA), created a mobile phone-based network to monitor for outbreaks of Rift Valley fever (Munyua et al., 2019; Oyas et al., 2018).3 Trained healthcare workers and community volunteers collect data related to RVF in their respective areas, including information on animal health, human cases, and vector (mosquito) populations. Using specially designed mobile applications and/or text message reporting, the data are transmitted in real time to a central database or directly to public health authorities. By continuously monitoring these data, health authorities can swiftly identify potential outbreaks or emerging RVF trends.

Actionable guidelines for better data management

1. **Prioritize data collection at high-risk areas**: Focus data collection efforts, emphasizing high-risk animal populations and environments and animal–human interfaces (Modules 2 and 3). This optimizes resource allocation and effectiveness.

2. **Harmonize processes and improve data interoperability**: Standardize processes for data collection, management, and access across One Health domains; develop strategies to enhance interoperability among relevant datasets, including opportunities to link governmental surveillance data with academic research or NGO activities.

3. **Map existing datasets**: Create comprehensive maps detailing high-priority existing datasets for use when needed.

BARRIER 5: TRANSBOUNDARY DISEASE SURVEILLANCE

Cross-border well-coordinated surveillance systems are imperative to the early detection of priority pathogens in both the environment and in human and animal hosts, allowing for a swift response across all pertinent sectors. However, balancing the economic benefits of animal trade with the crucial need to safeguard public health and biodiversity presents a significant challenge. Encouragingly, many Southeast Asia countries, for example, Vietnam (Module 3), have taken initial steps by implementing bans on wildlife trade and consumption, indicating a shift towards prioritizing health and conversation.

Efforts are often siloed by respective countries with no transboundary considerations (Module 3). It is important to have the call for a unified, cross-border approach focusing on strengthening law enforcement and regulation and the integration of health professionals into wildlife management. Additionally, a holistic strategy that combines stakeholder perspectives and community engagement aligning with national and regional strategies, within the One Health framework, is needed for managing zoonotic disease outbreaks while ensuring a sustainable coexistence between humans and wildlife.

3 This viral disease primarily affects animals but can also be transmitted to humans, leading to flu-like symptoms and severe complications like hemorrhagic fever and encephalitis, or even death.
BOX 7-3
The importance of assessment tools for improving disease surveillance

The importance of robust assessment tools for assessing surveillance systems in the context of wildlife and environmental services is important. While there are established evaluation tools in the public health and veterinary services, such as the WHO Joint External Evaluation (JEE) and World Organisation for Animal Health (WOAH) Performance of Veterinary Services (PVS) Pathway (de la Rocque et al., 2023). A similar emphasis on initiatives such as the Tripartite tool for Surveillance and Information Sharing Operational Tool (SIS OT) meets the need for comprehensive evaluation mechanisms across all facets of disease surveillance. The introduction of these evaluation tools would help pinpoint surveillance gaps and opportunities for enhancement. This has been noted in ‘Module 2: How the Past Informs the Future—Opportunities in Southeast Asia to Prevent and Respond to Zoonotic Spillover,’ wherein it was mentioned that cost and effort are some of the greatest barriers to establishing effective spillover surveillance across the region. This involves money, detection capability, field workers, and laboratory capability. A solution for this is the data reduction strategy—by conducting surveillance at high-risk human–animal interfaces and at geographical areas known to have been the site of pathogen emergence (Gray et al., 2021).

The broader implementation of evaluation tools and the standardization of surveillance practices and priority disease selection across countries remain challenges. Addressing these issues is crucial for incorporating wildlife health and environmental factors into public health surveillance systems, risk assessments, health security strategies, training programs, funding initiatives, and implementation efforts (Machalaba et al., 2021).

Case Example 7-6
Regional initiatives in preventing transboundary disease outbreaks: The Mekong Basin Disease Surveillance (MBDS) network

In 2001, the MBDS network was founded by six Ministers of Health from countries in the Greater Mekong subregion, including Cambodia, China (specifically Yunnan and Guangxi), Lao PDR, Myanmar, Thailand, and Vietnam. The network’s objectives include enhancing both national and regional capacities in infectious disease surveillance, fostering interregional collaboration, responding to outbreaks, and facilitating information exchange for swift and effective management of public health risks. For a broader understanding of these efforts and to access additional case examples, please refer to Module 3 section on ‘Case Examples and Other Efforts,’ where we explore in greater detail the lessons learned and strategies employed in various regions to strengthen transboundary disease surveillance and response.

Actionable guidelines to improve transboundary disease outbreak response

1. Establish sentinel surveillance systems: Develop and implement sentinel surveillance systems that regularly monitor and collect data on wildlife populations, domesticated animals, and human communities to detect potential disease threats early.

2. Move from reactive to proactive surveillance: Implement a registration or permitting system for farms and hunters involved in wildlife and domesticated animal trade. Ensure
that activities are conducted in a controlled and traceable manner, facilitating better disease monitoring and management.

3. **Regulate wildlife movement**: Establish policies to monitor the movement of wildlife across borders, particularly by human traders. Establish and enforce wildlife trafficking laws and measures to reduce illegal wildlife trade.

4. **Develop registries, documentation, and incentive structures**: Develop comprehensive registries and documentation systems to track the movement of animals and animal products along the value/supply chain. This information should be transparent and accessible to relevant authorities in multiple countries.

5. **Implement penalty structures**: Establish and enforce penalties for those who do not adhere to regulations or fail to report disease outbreaks promptly. Penalties should be sufficient to deter risky behaviour.

BARRIER 6: HUMAN BEHAVIOR AND CONSUMPTION

In some communities, encouraging sustainable behavioural change is essential to prevent zoonotic spillover and control potential disease threats (Module 6). Human behaviour plays a critical role in either driving or mitigating the transmission of zoonotic diseases and can increase or decrease the risk of spillover events. Several human behaviours are associated with animal trade, both wild and livestock, including hunting, culling, selling, trading, cooking, and consuming animals (Figure 7-9). These behaviours are influenced by various factors such as limited awareness of zoonoses risks, poor literacy and education, poverty, the need to sustain livelihoods, cultural beliefs, religious practices involving animals, traditional or long-standing animal handling practices, limited access to personal protective equipment, and the high demand and value of wild animal products.

To prevent and protect against spillover events, each country in Southeast Asia can benefit from identifying and analysing behavioural factors, patterns, and intervenable control points related to wildlife hunting and trade and domestic and peri domestic animal keeping that may pose risk for spillover. Practitioners may then design culturally congruent behavioural interventions that effectively convey risks to critical populations including the Indigenous Peoples, which could include changes to animal handling practices, conducting community training, or raising awareness about potentially risky behaviours. For example, mass culling of infected herds, flocks, etc., is a principle response to controlling outbreaks. The approach is being reevaluated in many communities based on ethical, economic, and ecological implications.
GUIDELINES FOR COUNTERING ZOONOTIC SPILLOVER

FIGURE 7-9 The image presents a sequence of human behaviours that can potentially drive disease spillover from animals to humans. These behaviours include hunting, which typically involves wild animals, but the cycle extends to livestock, through processes such as culling, trading, cooking, and consuming.

Despite numerous instances of animals (wild or domesticated) carrying known or potentially unknowable viruses, epidemiological data are often collected in, and analysed by scientists who are based in high-income nations (Alba et al., 2020; Skopec et al., 2020). Low- and middle-income countries are underrepresented in the literature, leading to a skewed perception of global risk (Yegros-Yegros et al., 2020). Investing in and improving local data collection and analysis would provide more accurate and evidence-based data for informing public health measures.

Qualitative methods that could be used to characterize high-risk behaviours include participant observations, in-depth interviews, and focus-group discussions. Further, engaging social and behavioural scientists in the identification of high-risk health behaviours and possible intervention points, as well as their design and implementation, will likely improve the quality and sustainability of the behavioural interventions, given their expertise in behavioural change theories and practice, as well as past successes and failures in behaviour-based interventions. In addition, integrated behavioural change models can be developed and used to identify opportunities for intervention and changes in behaviours that mitigate the risk of spillover.

Case Example 7-7
Regional initiatives to minimize human behavioural factors that contribute to zoonotic spillover: The Wildlife Conservation Society (WCS) in Cambodia

The WCS’s goal is to protect wildlife and promote sustainable practices related to wildlife trade and it works to raise awareness about the importance of wildlife conservation and safe and sustainable wildlife trading practices in countries in the region. In Cambodia, WCS conducts policy advocacy, research, and education initiatives designed to reduce the risks associated with wildlife trade and consumption (WCS Cambodia, 2024). They intervene to achieve sustainable behavioural change by advocating for supportive policies and, through community engagement, by educating key local populations.
GUIDELINES FOR COUNTERING ZOONOTIC SPILOVER

Actionable guidelines for addressing human behaviours

1. **Identify how and why people engage in unique risky behaviour, by employing qualitative research methods:** Human behaviour that can contribute to zoonotic spillover is often unique to the context, and may differ among villages, provinces, or subnational regions. It is important for those trying to affect behaviour to understand how and why individuals engage in such behaviours within the target population and their surrounding social environment.

2. **Design and implement culturally congruent interventions and risk communication methods:** Prospective interventions benefit from social listening efforts, in which they attempt to understand individuals’ primary interests, concerns, and misconceptions about the topic (i.e., animal-to-human spillover of zoonotic pathogens). Based on the social listening findings, interventions that resonate with the target population’s values, beliefs, and communication styles can be developed. This might involve using local metaphors, partnering with trusted community leaders, or leveraging existing communication channels.

3. **Promote participatory approaches:** Involve communities in intervention design and implementation to ensure their ownership, sustainability, and effectiveness.

BARRIER 7: WORKFORCE AND HUMAN CAPACITY DEVELOPMENT

A resilient workforce, capable of addressing the dynamic challenges posed by zoonotic disease and global health threats, relies on professionals with transdisciplinary skills and competencies. In addition, health literacy is an important requirement for the management and prevention of disease after spillover, and to emphasize competencies to access, understand, appraise, and apply information to make health decisions. In Southeast Asia, local and national-level strategies for strengthening workforce and human capacity to combat infections disease are pivotal, impacting overall system performance and ensuring the viability of any reforms. Historically, the different specialties have been created separately but combating zoonotic spillover necessitates a cross training strategy to enable professionals to navigate seamlessly across sectors and agencies. To address the complex challenges of zoonotic diseases, we need a multifaceted approach to workforce development:

- **Transdisciplinary expertise:** Professionals must move beyond their silos, developing cross-training that allows them to collaborate effectively across sectors. This includes strong communication skills for interacting with diverse audiences, as well as experience in team-based problem-solving and conflict resolution (Togami et al., 2023).
- **Public health literacy:** Empowering individuals with the ability to access, understand, and apply health information is crucial for disease prevention and management, especially after spillover events (Ellwanger and Chies, 2021; Vora et al., 2023)
- **Strategic planning in Southeast Asia:** Southeast Asian nations must proactively strengthen their health workforces through local and national initiatives. This includes creating leadership roles to overcome institutional hurdles and foster cross-sectoral collaboration.
• Sustainable training: Interdisciplinary training programs must be designed with long-term career progression in mind to ensure the continued impact of these initiatives (Nicholson et al., 2019).

BOX 7-4

Existing barriers and gaps in workforce development

An overarching impediment in developing workers who are comfortable across sectors and disciplines are disparities in investment and funding among human health and agriculture/veterinary and environmental education programs. For example, agricultural-relevant tertiary education in some SEA countries, including veterinary education, often lacks robust quality assurance measures, posing a significant challenge in developing a workforce comfortable navigating diverse sectors in the changing disease landscape. A rigid curriculum structure limits adaptability and responsiveness to evolving needs in the One Health workforce. Table 7-1 details specific concerns with workforce development in SEA. These barriers and gaps must be addressed strategically to strengthen the workforce in SEA to effectively tackle complex zoonotic disease spillover challenges.

Table 7-1 Challenges and their impact on workforce development in Southeast Asia

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Impact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited university autonomy</td>
<td>Ministerial oversight restricts universities' ability to recruit diverse faculty, develop relevant curricula, and adapt programs to meet emerging needs. This limits the talent pool and curriculum alignment with zoonotic disease preparedness.</td>
</tr>
<tr>
<td>Inadequate workforce data</td>
<td>Lack of comprehensive data on workforce composition (disciplines, subspecialties, distribution) hinders effective planning and development. This makes it difficult to identify shortfalls and prioritize areas for investment.</td>
</tr>
<tr>
<td>Workforce structure imbalances</td>
<td>Imbalances based on specialization, location, gender, or resource allocation lead to disparities in capacity across different aspects of zoonotic spillover disease response (e.g., surveillance, outbreak management). This can create critical gaps in preparedness.</td>
</tr>
<tr>
<td>Limited cross-sectoral training</td>
<td>Absence of institutionalized cross-disciplinary training programs hinders collaboration and development of comprehensive skills needed for tackling complex challenges such as zoonotic diseases. Professionals struggle to work effectively across sectors due to lack of shared knowledge and understanding.</td>
</tr>
<tr>
<td>Limited workforce capacity and engagement</td>
<td>Many professionals lack the necessary knowledge, skills, or resources to effectively participate in cross-sector initiatives. This hinders their ability to collaborate effectively with colleagues from other sectors and contribute to the success of these initiatives.</td>
</tr>
<tr>
<td>Lack of enabling institutional ecosystems</td>
<td>Existing institutional structures often impede, rather than promote, collaboration across different sectors. These structures may favour individuals with specific backgrounds or expertise, hindering the inclusion of diverse perspectives and skillsets crucial for tackling complex challenges such as zoonotic diseases.</td>
</tr>
</tbody>
</table>
Case Example 7-8
Regional initiatives to improve workforce and human capacity to combat zoonotic spillover

A. SEAOHUN/USAID One Health Workforce - Next-Generation (OHW-NG)
Since 2015, a series of comprehensive programs has engaged over 50,000 participants, including students, academics, and officials, across the region in multidisciplinary One Health training, as documented in the SEAOHUN Secretariat OHW-NG annual reports. These initiatives encompassing locally curated competency-based education, research opportunities, fellowships, internships, and student clubs, have equipped participants with the knowledge and skills necessary to collaborate effectively to address complex One Health challenges.

B. Field Epidemiology Training Programs (FETPs)
FETPs play a vital role in building the capacity of the public health workforce to conduct field epidemiology and other critical services for disease surveillance and spillover prevention and enhanced epidemiology capacity at the local levels. These programs are modeled after the Epidemic Intelligence Service (EIS) of the US CDC and have been adapted to include veterinarians (FETPV). This collaboration provides services with countries and communities across the region and aligns with the One Health Joint Plan of Action (Seffren et al., 2022) implemented through Tephinet. Examples are listed in Appendix A.

FIGURE 7-10 Thailand FETPs working on COVID-19 management guidance for factories. Source: CDC.
A. TVET Program in Southeast Asia

The Technical and Vocational Education and Training (TVET) program can serve as a valuable roadmap for addressing workforce development challenges and enhancing collaboration in the One Health domain (UNHCR, n.d.). For example, in Malaysia, MyOHUN has been engaging vocational students in One Health innovations and teaching and learning activities since 2021 with the aim to ‘meet the industry demand and contribute to economic growth, in line with globalization while supporting a knowledge-based economy and technological advancement and enhancing global workforce mobility’.

B. Global Laboratory Leadership Programme (GLLP)

The GLLP offers specialized training in leadership and management for leaders overseeing human and animal health laboratories, including those with public health significance (such as environmental, agricultural, food, or chemical laboratories). The six partners (Association of Public Health Laboratories (APHL), US CDC, European Centre for Disease Prevention and Control (ECDC), FAO, WHO, and WOAH) enlisted the expertise of more than 140 global professionals in human and animal health and laboratory science during its development. These partners are dedicated to the program’s vision of empowering laboratory leaders worldwide to enhance national laboratory systems using a One Health approach, thereby strengthening global health security (WHO, 2023c).

C. Indonesia’s cross-sectoral training initiative for zoonotic diseases

Indonesia has implemented a cross-sectoral training initiative for zoonotic diseases. This initiative utilizes Joint Risk Assessment (JRA) within its training modules, empowering 761 officers from 17 provinces with the necessary knowledge and skills for zoonoses prevention and control using the One Health system-based approach.

4 Indonesia’s multidisciplinary and multisectoral collaboration in Implementing Joint Risk Assessment (JRA), Training of Trainers (ToT) and many other initiatives like IHR-PVS National Bridging Workshop
Actionable guidelines for One Health workforce development in the region

1. **Invest in faculty development in One Health understanding and increasing necessary skill sets:** The demand for professionals equipped with transdisciplinary skills can be met through workforce development via education and cross-sectoral training.

2. **Enhance or develop interprofessional education among One Health domains:** Develop and incorporate interprofessional education modules in existing curricula that explore interconnected aspects of One Health domains focusing on a wide range of topics such as genetics, biodiversity, economics, and healthcare in the specific context of Southeast Asia.

3. **Develop subspeciality or certification programs for One Health in related degree programs:** Create subspecialty or certification programs in One Health within relevant degree programs to build expertise and establish key referral points for individuals or teams within the field to improve local, national, and regional expert capacities in addressing critical health challenges related to zoonotic diseases.

4. **Define and clearly outline target One Health skill sets and competencies for in-service professionals:** Clearly outline the essential One Health skill sets and competencies required for in-service professionals, focusing on their ability to collaborate effectively across disciplines and sectors.

5. **Institutionalize integrated and multisectoral programs/trainings:** Formalize and integrate multisectoral training programs into existing institutional frameworks to ensure their sustainability and systematic execution.

6. **Develop robust leadership training programs for top management:** Develop robust leadership training programs that focus on building strategic thinking, decision-making, communication, and team-building abilities towards shared goals.

7. **Diversify the public health workforce:** Actively recruit individuals from non-traditional disciplines and fields with relevant expertise in public health agencies (e.g., veterinarians, environmental scientists). Encourage engagement with both government and non-governmental organizations to bridge sectoral gaps. For example, Thailand Ministry of Public Health hires veterinarians and other cross disciplinary expertise into their workforce pool.

8. **Actively utilize internship programs for trainees from different backgrounds:** Foster inclusivity, collaboration, and synergy by engaging individuals with diverse experiences, all while maintaining shared focus on addressing zoonotic disease.

9. **Modernize hiring and recruitment systems and their terms of references:** Adapt hiring and recruitment processes to accommodate evolving workforce needs and foster a more dynamic work environment. Revising job descriptions and utilizing modern methodologies will ensure that workforces remain relevant and effective in meeting demands of today’s rapidly changing landscape.

5 When possible, engage ASEAN (e.g., ASEAN Workplan on Education) and SEAMEO (Southeast Asia Ministers of Education Organization) for high level buy-in for One Health workforce transformation.

6 Thailand’s experience and strategy in enhancing public health with cross-disciplinary expertise is discussed in Yamada et al. (2014).
GUIDELINES FOR COUNTERING ZOONOTIC SPILLOVER

BARRIER 8: LABORATORY CAPACITY AND BIOSAFETY

Laboratory infrastructure and capability play a pivotal role in the early detection and effective management of zoonotic diseases (FAO et al., 2022; Kan, 2022). The strengthening of diagnostic capacity in laboratories within national animal health and public health systems is essential for effectively controlling zoonotic spillovers. Adequate laboratory analysis capability contributes significantly to the early detection of diseases and ensures rapid response during outbreaks. Good laboratory capacity includes the ability to conduct robust diagnostic techniques (Gronvall et al., 2023) such as genotyping and phenotyping, the development of genome-based tracking systems with necessary bioinformatics, and integration into regional and global platforms, and should be accompanied by enhancement of biosafety measures.

Laboratory biosafety in Southeast Asia encompasses the practices, guidelines, and regulations that ensure the safe handling, containment, and disposal of biological agents and materials within laboratories. Biosafety protocols in Southeast Asia are not uniform, as they are shaped by each country’s available resources, infrastructure, and regulatory environment. Nations develop their biosafety systems to address local needs while conforming to international guidelines and recommended best practices. While biosafety practices can vary between countries in the region, there are overarching principles and initiatives aimed at promoting biosafety and biosecurity. Web-based tracking studies have gathered information about existing and emerging biological containment laboratories. These studies also evaluate the biosafety and biosecurity oversight efforts to coordinate the function of these laboratories. In addition, there are resources to assess public health or pandemic preparedness in individual countries that include data about labs and biosafety/biosecurity programs.

Case Example 7-9
Leveraging existing laboratory infrastructure integrating animal health and zoonotic diseases at local, national, and regional levels

Effective management of emerging infectious diseases pertinent to zoonotic origins requires robust infrastructure, continuous specialized training, and the adoption of advanced, rapid, and accurate diagnostic technologies. These efforts, along with continuous infrastructure upgrades and maintenance, can be cost-and resource-intensive. Southeast Asian countries have the opportunity to actively participate in a range of collaborative efforts and approaches, collectively enhancing regional disease surveillance networks and regional health security (Module 5). This includes knowledge exchange, joint research and development, and the establishment of a unified framework for biosafety and biosecurity training.

Across the globe, clinical laboratories dedicated to improving human health are well established. In Southeast Asia, the focus on communicable and noncommunicable human diseases is central to the.

7 The ASEAN report, Regional Strategic Framework for Laboratory Capacity Building and Networking in ASEAN, identified significant disparities in laboratory capacity among ASEAN member states. A notable concern was the limited sharing of high-quality data, which was particularly evident during the control stages of multicountry outbreaks, such as the high-pathogenic avian influenza outbreak.

8 See, for example (1) WHO Health Emergency Dashboard, (2) WHO IHR States Parties Self-Assessment Annual Reporting Tool, (3) WHO Joint External Evaluation, (4) International Federation of Biosafety Organizations, (5) Global Biolabs, and (6) Global Health Security Index.
health of each nation (Fritz and Fromwell, 2022). This can be seen through many development programs for infectious disease specialists and public health professionals, training programs conducted by many agencies such as ASEAN Plus 3 Field Epidemiology Training Network (ASEAN+3 FETN), and centres of excellence in tropical diseases across the region. Moreover, recognizing the interconnectedness between tropical diseases and zoonotic diseases—in their causes and the environments in which they emerge—promotes multidisciplinary approach to finding solutions. This understanding encourages participation of veterinarians, exemplified by programs such as the Regional Field Epidemiology Training Program for Veterinarians (R-FETPV) in Thailand. A similar context can be adapted to enhance the work of laboratory clinicians and scientists, by integrating technologies used in human disease laboratory capacity planning, biosafety measures, funding, research activities, capacity building, and human resources with veterinary diagnostic and research laboratories—a key strategy for comprehensive pandemic preparedness and response.

Actionable guidelines for strengthening laboratory capacity and biosafety in the region

1. **Standardize laboratory-associated training in both biosafety and biosecurity:** Ensuring that laboratory personnel are well trained is critical for effective laboratory operation and biosafety. Implement comprehensive, standard biosafety training for all laboratory personnel involved in zoonotic disease research and diagnostics (see Appendix B).

2. **Standardize laboratory services:** Ensure the provision of standardized, proficient, and quality laboratory services for the detection of zoonotic disease outbreaks for timely and accurate e-diagnosis.

3. **Mobilize resources for field-based systems:** Mobilize resources for the development and deployment of field-deployable diagnostic systems via the ASEAN regional Strategic Framework for Laboratory capacity to facilitate resource allocation.

4. **National strategy:** Implement national strategies and policies that facilitate the efficient and sustainable provision of laboratory services. These strategies should encompass infrastructure development, personnel training, and quality assurance.

5. **Establish laboratory information systems:** Encourage the establishment of interoperable laboratory information systems and facilitate data sharing among stakeholders. This promotes efficient data exchange and collaboration in disease surveillance and response efforts.

BARRIER 9: ENGAGING COMMERCIAL ENTITIES

Animal and animal-product trading, along with the livestock and agriculture sectors form a significant role in the economy of Southeast Asia, catering both national and regional markets (Module 6). The region records some of the highest number of foodborne illness-related deaths globally. The risk of contamination spans the entire supply chain (from farm to fork). The emergence of zoonotic diseases is closely linked to various factors. The list below, while not
comprehensive, outlines key vulnerabilities⁹ that predispose animal-based food industry in Southeast Asia, to the risk of spread of zoonotic pathogens:

- Limited biosecurity measures, veterinary care, and infrastructure: inadequate preventive and response measures in animal health management
- Complex supply chains: the presence of multiple intermediaries and informal markets complicates traceability and biosecurity
- High-density livestock production: farming in densely populated areas elevates the risk of disease spread
- Environmental changes: urbanization, land use changes, and climate change contribute to the emergence and spread of diseases
- Diverse agricultural practices: variability in animal farming techniques can influence disease risk
- Regulatory challenges: limited enforcement of health and safety regulations exacerbates vulnerabilities
- Wildlife trade: Both legal and illegal wildlife trades are significant risk factors for zoonosis
- Cross-border dynamics: Porous borders facilitate the cross-border movement of diseases due to trade and travel

Within commercial ecosystems tied to the animal-based food industry, there exist hotspots for future emerging zoonotic diseases and practices that facilitate the spread of disease. Beyond production losses, animal diseases incur substantial costs due to the need to implement mitigation strategies. The engagement of commercial entities within Southeast Asia in the fight against zoonotic spillover of high-consequence pathogens is paramount but challenging.

Industrial food animal production has seen a global surge in market share. These operations often exceed the carrying capacity of the local ecosystem, leading to numerous challenges such as persistent viral presence and the risk of strain reassortment, both of which can contribute to the emergence of dangerous pathogens (Davis et al., 2011).

Some challenges at these large facilities include the persistence of viruses in large-scale production facilities. The high stocking density and continuous throughput and frequent introduction of immunologically naïve animals perpetuates viral circulation. Achieving full decontamination without depopulation is challenging. Large inventories of live animals increase the potential for viral strain reassortment and host selection. This can lead to the emergence of viruses with critical traits like high transmissibility and virulence. The global trade in animals, feed, and food products involves multi-national corporations. Regional and country-level efforts may need to leverage economic and political determination to drive change.

⁹ Relevant reports for animal farming from Institute of Animal Law of Asia; Farm Animal Investment Risk and Return (FAIRR)
Case Example 7-10
The need for innovative business models integrating preventive measures for the spread of zoonotic pathogens

Industrial-scale animal-based food and food products in Southeast Asia faces significant challenges related to foodborne and waterborne zoonotic diseases, which are often caused by pathogenic microorganisms contaminating food, water, or surfaces within the production process, leading to outbreaks (Todd, 2014; Hassan, 2014). While quality assurance measures like HACCP (Hazard Analysis and Critical Control Points) are in place within the value chain before products reach consumers, there is a need to shift focus to the early stages of the value chain to prevent the spread of zoonotic pathogens. It is essential to implement innovative business models that incorporate early-stage interventions and embrace inclusive approaches that foster active participation from all relevant stakeholders, including the broader public who collectively play a crucial role in addressing the emergence and spread of zoonotic pathogens.

The circular economy, with its principles of sustainability and resource efficiency, offers a promising framework for mitigating these risks. The circular economy movement is gaining momentum across Southeast Asia with ASEAN at the forefront of promoting circular economy through its five strategic priorities as documented in the Framework for Circular Economy for the ASEAN Economic Community:

1. Standard harmonisation and mutual recognition of circular products and services
2. Trade openness and trade facilitation in circular goods and services
3. Enhanced role of innovation, digitalisation, and emerging/green technologies
4. Competitive sustainable finance and innovative environmental, social, and governance (ESG) investments
5. Efficient use of energy and other resources

While circular economy concepts and initiatives have gained traction in Southeast Asia10, efforts have predominantly focused on the sustainable environmental perspective, with limited attention given to preventing the spread of zoonotic pathogens—a critical aspect in accelerating the success of the commercial trade and industries. There is a need for initiatives that integrate preventive measures for the spread of zoonotic diseases into circular economy strategic priorities. Measures may include:

- identifying priority areas within the circular value chain where disease transmission can be effectively mitigated
- research and development focusing on disease risk mitigation efforts
- collaboration between circular economy stakeholders, veterinarians, healthcare personnel and scientists, and policymakers
- considering disease prevention as a key performance indicator

By integrating preventive measures, such as circular initiatives designed with disease risk reduction in mind, Southeast Asia can create a more resilient and sustainable food industry that prioritizes human–animal–environmental well-being.

10 Other organizations advocating circular economy include Asian Development Bank (ADB), A Systems Approach for Transitioning Southeast Asia to a Circular Economy | Development Asia
GUIDELINES FOR COUNTERING ZOONOTIC SPILLOVER

Actionable guidelines to engage commercial entities

1. **Enforce environmental decontamination and fallow period:** For all-in, all-out production models, emphasize thorough environmental decontamination. Include a fallow period before re-population to prevent viral persistence (i.e., don’t leave the poultry litter on the floor—clean it out and disinfect), consider environmental reservoirs at all height levels, and consider the importance to decontaminating the air and water systems too.

2. **Improve waste management:** Develop waste management practices that minimize the export of infectious agents. Avoid exporting waste into neighbouring communities, other sectors of the agricultural system, or across local, national, or regional boundaries.

3. **Tailor engagement to the entity:** Large, powerful corporations often function like state-like entities with the ability to influence policymaking. Countries often let large-scale companies set their own policies. Tailor engagement strategies based on the size and influence of the corporation. Consider other relevant issues, such as occupational health, to craft effective approaches. Promote the idea that adopting public health behaviours is the easiest path for large companies, encouraging them to align their practices with spillover prevention efforts.

CONCLUSION

The module outlines nine key obstacles to boosting resilience against zoonotic disease threats in Southeast Asia, showcases examples of existing efforts, and presents actionable plans within a structured framework overview organized thematically. These nine barriers are interconnected and have persisted through past local and regional disease outbreaks, impacting various societal sectors, with vulnerable communities facing disproportionate effects. Bridging efforts, scalable and adaptable strategies, tailored to varied operational capacities and governance structures across Southeast Asia are necessary to address existing gaps and barriers. As of the publication of this guidebook, issues such as resource constraints, porous borders, and the need for improved global surveillance (among others) remain major challenges in the region. This calls for a stronger integrated approach, resources, and expertise to find impactful solutions. The responsibility spans multiple sectors for realizing the solution to these issues, requiring cooperation among public health officials, veterinarians, and scientists, and calls for community engagement, policy advocacy, and research support, underlining a collective duty to protect public health and regional biodiversity.
Appendix A: Field Epidemiology Training Programs (FETPs)

<table>
<thead>
<tr>
<th>Country</th>
<th>Program</th>
<th>Entities</th>
<th>Target sector</th>
<th>Topical focus</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thailand (national and regional)</td>
<td>R-FETPV</td>
<td>Thai gov’t FAO (UN)</td>
<td>Veterinarians</td>
<td>Veterinary epidemiology of animal diseases</td>
<td>Iamsirithaworn et al., 2014</td>
</tr>
<tr>
<td>China</td>
<td>FETPV</td>
<td>Chinese gov’t FAO (UN)</td>
<td>Veterinarians</td>
<td>Veterinary epidemiology of animal diseases</td>
<td>FAO China, 2017</td>
</tr>
<tr>
<td>Malaysia</td>
<td>MyOHUN</td>
<td>MyOHUN</td>
<td>Intersectoral</td>
<td>Field epidemiology AMR</td>
<td>MyOHUN - Malaysia One Health University Network n.d.-b.</td>
</tr>
<tr>
<td>Indonesia</td>
<td>PELVI</td>
<td>INDOHUN CDC</td>
<td>Veterinarians Public health</td>
<td>Veterinarian epidemiology</td>
<td>FAO Indonesia, 2017</td>
</tr>
<tr>
<td>Singapore</td>
<td>S-FETP</td>
<td>NUS-SPH NCID Nat’l Parks</td>
<td>Medical and public health officers Veterinarians</td>
<td>Field epidemiology</td>
<td>S-FETP</td>
</tr>
<tr>
<td>Regional</td>
<td>FETP</td>
<td>WHO Western Pacific</td>
<td></td>
<td></td>
<td>R-FETP</td>
</tr>
</tbody>
</table>
Appendix B: Region biosafety organizations and resources

<table>
<thead>
<tr>
<th>Country</th>
<th>Organizations</th>
<th>Web Links</th>
</tr>
</thead>
<tbody>
<tr>
<td>Burma (Myanmar)</td>
<td>National Health Laboratory, Myanmar</td>
<td>https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0273380</td>
</tr>
<tr>
<td>Cambodia</td>
<td>National Institute of Public Health; Institut Pasteur du Cambodge</td>
<td>https://niph.org.kh/niph/about/index.html</td>
</tr>
<tr>
<td>China</td>
<td>National Security Commission; Wuhan National Biosafety Laboratory; Biosafety Level 4 training; Biosafety Law of the People’s Republic of China, October 17, 2020</td>
<td>https://www.tandfonline.com/doi/pdf/10.1080/10670564.2015.1075717</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6478205/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>http://www.npc.gov.cn/npc/c30834/202010/bb3bee5122854893a69acf4005a66059.shtml</td>
</tr>
<tr>
<td>Indonesia</td>
<td>Indonesia Biosafety Clearing House; Indonesian Biorisk Association</td>
<td>https://indonesiabch.menlhk.go.id/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://internationalbiosafety.org/ifba_members/indonesian-biorisk-association/</td>
</tr>
<tr>
<td>Lao PDR</td>
<td>Institut Pasteur du Laos</td>
<td>https://www.pasteur.la/project-carried-on-in-the-lab/project-03/biosafety-lab/</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Malaysian Biosafety and Biosecurity Association</td>
<td>https://mbba.my/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://internationalbiosafety.org/ifba_members/malaysian-biosafety-biosecurity-association/</td>
</tr>
<tr>
<td>The Philippines</td>
<td>Biorisk Association of the Philippines; National Training Center for Biosafety and Biosecurity</td>
<td>https://internationalbiosafety.org/ifba_members/biorisk-association-of-philippines/</td>
</tr>
<tr>
<td>Country</td>
<td>Organization</td>
<td>Website</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Singapore</td>
<td>Biorisk Association of Singapore; Ministry of Health Biosafety</td>
<td>https://biorisk.sg/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://www.moh.gov.sg/biosafety/home</td>
</tr>
<tr>
<td>Thailand</td>
<td>Biosafety Association of Thailand; BIOTEC Biosafety Program</td>
<td>https://internationalbiosafety.org/ifba_members/biosafety-association-of-thailand/</td>
</tr>
<tr>
<td></td>
<td></td>
<td>https://www.biotec.or.th/home/en/biosafety-program-en/</td>
</tr>
<tr>
<td>Viet Nam</td>
<td>Viet Nam Field Epidemiology Training Program</td>
<td>https://www.tephinet.org/training-programs/vietnam-field-epidemiology-training-program</td>
</tr>
</tbody>
</table>